Inverse spectral problems for Sturm-Liouville operators with transmission conditions

author

Abstract:

Abstract: This paper deals with the boundary value problem involving the differential equation                      -y''+q(x)y=lambda y                                 subject to the standard boundary conditions along with the following discontinuity conditions at a point              y(a+0)=a1y(a-0),    y'(a+0)=a2y'(a-0)+a3y(a-0).  We develop the Hochestadt-Lieberman’s result for Sturm-Liouville problem when there is a discontinuous condition on the closed interval. We show that the potential function and some coefficients of boundary conditions can be uniquely determined by the value of the potential on some interval and parts of two set of eigenvalues.   

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Inverse Sturm-Liouville problems with transmission and spectral parameter boundary conditions

This paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). In this problem q(x), d, a , b are real, qin L^2(0,pi), din(0,pi) and lambda is a parameter independent of x. By defining a new...

full text

Inverse Sturm-Liouville problems with a Spectral Parameter in the Boundary and transmission conditions

In this manuscript, we study the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. By defining  a new Hilbert space and  using its spectral data of a kind, it is shown that the potential function can be uniquely determined by part of a set of values of eigenfunctions at som...

full text

Inverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions

In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...

full text

inverse sturm-liouville problems with transmission and spectral parameter boundary conditions

this paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). in this problem q(x), d, a , b are real, qin l^2(0,pi), din(0,pi) and lambda is a parameter independent of x. by ...

full text

Solving Inverse Sturm-Liouville Problems with Transmission Conditions on Two Disjoint Intervals

‎In the present paper‎, ‎some spectral properties of boundary value problems of Sturm-Liouville type on two disjoint bounded intervals with transmission boundary conditions are investigated‎. ‎Uniqueness theorems for the solution of the inverse problem are proved‎, ‎then we study the reconstructing of the coefficients of the Sturm-Liouville problem by the spectrtal mappings method.

full text

inverse sturm-liouville problems with a spectral parameter in the boundary and transmission conditions

in this manuscript, we study the inverse problem for non self-adjoint sturm--liouville operator $-d^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. by defining  a new hilbert space and  using its spectral data of a kind, it is shown that the potential function can be uniquely determined by part of a set of values of eigenfunctions at som...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 2

pages  221- 232

publication date 2021-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023